Covalent modification of the glnG product, NR_I , by the glnL product, NR_{II} , regulates the transcription of the glnALG operon in $Escherichia\ coli$

(glutamine synthetase/phosphorylation/nitrogen metabolism/positive control)

ALEXANDER J. NINFA AND BORIS MAGASANIK*

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139

Contributed by Boris Magasanik, May 5, 1986

Transcription from nitrogen-regulated promoters, such as glnAp2, requires the glnG gene product, NR_I, as well as the rpoN(glnF) gene product, σ^{60} , and is regulated by the glnL gene product, NR_{II} . We find that in a reaction mixture containing NR_I, NR_{II}, and ATP, NR_{II} catalyzes the transfer of the y phosphate of ATP to NR_I. This covalent modification of NR_I occurs concurrently with the acquisition of the ability by the reaction mixture to activate transcription from glnAp2. In the presence of P_{II} , the product of glnB, NR_{II} catalyzes the removal of the phosphate from NR_I-phosphate. This reaction occurs concurrently with the loss by the reaction mixture of the ability to activate transcription from glnAp2. On the basis of this evidence, we propose that NR_I-phosphate activates transcription from nitrogen-regulated promoters and that the role of $NR_{\rm II}$ is control of the formation and breakdown of NR_I-phosphate in response to cellular signals of nitrogen availability.

In Escherichia coli and other enteric bacteria, transcription of the glnALG operon, which contains the structural gene for glutamine synthetase (glnA), is activated in response to nitrogen starvation at the promoter glnAp2 (1). This activation requires the DNA-binding protein NR_I, the product of glnG, as well as σ^{60} , the product of rpoN(glnF), and is regulated by NR_{II}, the product of glnL (2–8). Wild-type cells are able to decrease or increase very rapidly the rate of transcription initiation at glnAp2 in response to the addition or removal of ammonia. Mutants that lack NR_{II} lack the ability for this rapid response. Nonetheless, these mutants have regulated levels of nitrogen-regulated gene products in the steady state, indicating that a slower and less efficient NR_{II}-independent mechanism for the regulation of transcription from glnAp2 does exist.

The regulation of glnA expression by NR_{II} requires the products of two additional genes, glnD and glnB (9, 10). The glnD gene product is a uridylyltransferase (UTase) required for the conversion of P_{II} , the glnB gene product, to a uridylylated form, and a uridylyl-removing enzyme, which catalyzes the reverse reaction. The ability of UTase to convert P_{II} to P_{II} -UMP is stimulated by 2-ketoglutarate and, conversely, the ability of uridylyl-removing enzyme to remove the uridylyl group from P_{II} -UMP is stimulated by glutamine (11). Thus, ammonia starvation, which results in a high intracellular ratio of 2-ketoglutarate to glutamine, causes the conversion of P_{II} to P_{II} -UMP. Growth with ammonia excess, which results in a high intracellular ratio of glutamine to 2-ketoglutarate, causes the conversion of P_{II} -UMP to P_{II} .

Genetic analysis has shown that the effects of P_{II} and UTase on gluA expression are mediated by NR_{II} . The loss of P_{II} results in the NR_{II} -dependent activation of transcription

at glnAp2 in cells grown with an excess of nitrogen and, conversely, the loss of UTase results in the inability to activate transcription from glnAp2 (10). The effects of all mutations in glnB and glnD are suppressed, with regard to the steady-state levels of nitrogen-regulated gene products, by mutations resulting in the loss of NR_{II} (4, 10). Mutations in glnL can result in an altered product, such as $NR_{II}2302$, that causes the activation of transcription at nitrogen-regulated promoters without reference to the availability of nitrogen and the presence or absence of P_{II} and UTase (4, 5).

On the basis of these observations, it has been proposed that in the presence of P_{II} , NR_{II} converts NR_{I} to a form incapable of activating the initiation of transcription at nitrogen-regulated promoters. In the absence of P_{II} , brought about by its UTase-catalyzed conversion to the innocuous P_{II} -UMP, NR_{II} converts inactive NR_{I} to the form capable of activating transcription from nitrogen-regulated promoters (10).

Recent work in this laboratory has included the study of the transcription of glnA by purified components of $E.\ coli$ (8). It was shown that the initiation of transcription at glnAp2 carried on a supercoiled template requires core RNA polymerase and σ^{60} . This transcription was greatly stimulated by the addition of NR_I and NR_{II}2302. Neither NR_I nor NR_{II}2302 caused any stimulation of transcription when added alone.

In this paper, we describe additional experiments with purified components of $E.\ coli.$ Their results indicate that NR_{II} regulates the activity of NR_{I} by covalent modification.

MATERIALS AND METHODS

Purified Proteins. The product of the rpoN gene, σ^{60} , was purified as described by Hunt and Magasanik (8). NR_I was provided by Lawrence Reitzer (6), core RNA polymerase was provided by Tom Hunt, and P_{II} was provided by S. G. Rhee (12).

The products of the glnL gene, NR_{II} , and of a mutant glnL allele, NR_{II} 2302, were purified by a procedure that will be described in detail elsewhere. For both proteins, we used high-copy-number plasmids containing a previously described promoter-up mutation at glnLp (13, 14). The purification steps included chromatography on agarose-ethane and DEAE-Sephacel for NR_{II} , and these two steps as well as gel filtration using AcA44 for NR_{II} 2302. In each case, the purified protein was \approx 90% pure as judged by $NaDodSO_4/polyacrylamide$ gel electrophoresis.

Transcription Assays. The conditions and template plasmid were as described (8) with the following modifications: supercoiled template DNA was present at 5–10 nM, NR_I was added to 240 nM, core RNA polymerase (E) was added to 52 nM, and σ^{60} was added to 175 nM. NR_{II} and NR_{II}2302 were

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviation: UTase, uridylyltransferase. *To whom reprint requests should be addressed.

added as indicated. To determine the time course of the formation of the open RNA polymerase-promoter complex (18) (see Fig. 2A), a reaction mixture 6.5 times normal size was assembled lacking NR_{II}, UTP, and heparin. These components were prewarmed for 2 min at 37°C, followed by the addition of NR_{II}. At designated times, aliquots were removed and UTP and heparin were added. The experiments in which NR_I was pretreated with NR_{II} (Figs. 2 and 3) were performed as follows: reaction mixtures 3.5 times normal size containing all components except NR_I, NR_{II}, UTP, and heparin were assembled and held on ice. Each of these reaction mixtures was warmed for 5 min at 37°C prior to the addition of a mixture of NR_I and NR_{II} or NR_{II}2302. After this addition (time 0), aliquots were removed at the designated times and processed to determine the time course of open complex formation. The mixture of NR_I and NR_{II} contained additional components as indicated and was assembled on ice with NR_{II} added last. For the experiment in Fig. 2B, samples of this mixture were tested immediately after the addition of NR_{II} ("no pretreatment"), and after 20 min at 37°C ("pretreated"). For the experiments shown in Fig. 6 C and D, 1- μ l samples of the protein-labeling reaction mixtures containing NR_I and NR_{II} or NR_{II}2302 (see below) were mixed with the other components, which had been warmed for 2 min, and 3 min was then allowed for the formation of the open complex. These transcription assays contained NR_I at 48 nM and NR_{II} at 0.8 nM or NR_{II}2302 at 0.2 nM. This NR_I concentration is not limiting (unpublished observation).

Protein-Labeling Experiments. The time course of 32 P incorporation into trichloroacetic acid-precipitable material (see Figs. 4–6) was examined in reactions containing 50 mM Tris·HCl (pH 7.8), 50 mM KCl, 1 mM dithiothreitol, 0.5 mM EDTA, 10 mM MgCl₂, NR_I (at 2.4 μ M), 0.4 mM ATP (9000 cpm/pmol, either α - or γ -labeled), and NR_{II} or NR_{II}2302 as indicated. All of the components except ATP were mixed on ice and prewarmed for 2 min at 37°C. The reactions were started by the addition of ATP.

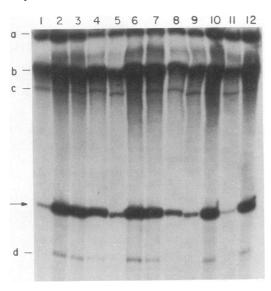


FIG. 1. Titration of NR_{II} and $NR_{II}2302$ activity. Each transcription reaction contained E, σ^{60} , NR_{I} , and the following concentrations of NR_{II} or $NR_{II}2302$: lane 1, no NR_{II} ; lanes 2–5, NR_{II} at 10, 5, 2, and 1 nM; lanes 6–9, $NR_{II}2302$ at 5, 2.5, 1, and 0.5 nM; lane 10, $NR_{II}2302$ at 10 nM; lane 11, NR_{II} at 20 nM but heated to 90°C for 5 min prior to use; lane 12, NR_{II} at 20 nM. The position of the 309-nucleotide transcript initiated at glnAp2 is indicated by an arrow. a, top of the gel; b, unknown transcripts, at least some of which seem to result from transcription initiated at glnAp2 proceeding beyond the terminator; c, unknown transcript not initiated at glnAp2; d, unknown transcript, probably a degradation product of transcript initiated at glnAp2.

Samples were withdrawn at the indicated times and spotted onto Schleicher & Schuell no. 34 glass fiber filters, which were immediately immersed into ice-cold 10% trichloroacetic acid containing 1% sodium pyrophosphate (wt/vol) (PP_i). After all samples had been collected, the filters were washed for 30 min on ice in 10% trichloroacetic acid 1% PP_i, for 30 min on ice in 5% trichloroacetic acid/1% PP_i and twice for 30 min in 5% trichloroacetic acid/1% PP_i at room temperature. The filters were then rinsed in ethanol, dried, and counted by liquid scintillation using Fisher Scintiverse I scintillation fluor.

For the analysis of labeled protein by polyacrylamide gel electrophoresis (see Fig. 5), $8-\mu l$ samples were added directly to 500 μl of 10% trichloroacetic acid/1% PP_i on ice. The samples were held on ice for 20 min and spun for 30 min in an Eppendorf centrifuge at 4°C. The recovered precipitate was dissolved in protein gel denaturing sample buffer, neutralized with NaOH, and analyzed on a 10% NaDodSO₄/polyacrylamide gel with a 3% stacking gel.

RESULTS

Activation of Transcription at glnAp2. We examined the ability of purified NR_{II} and NR_{II}2302 to stimulate transcription from glnAp2 in the presence of NR_I, σ^{60} , and core RNA polymerase. In these experiments, the reaction mixtures (complete except for UTP) containing different amounts of NR_{II} or NR_{II}2302 were incubated for 7 min, after which transcription was initiated by the addition of UTP (Fig. 1). The amount of RNA resulting from the initiation of transcription at glnAp2 became constant with increasing concentrations of NR_{II} or NR_{II}2302 and was approximately half-maximal when NR_{II} and NR_{II}2302 were 1.5 and 1.0 nM, respectively. Heating either NR_{II} or NR_{II}2302 to 70°C for 5 min completely destroyed the ability to stimulate transcription (data not shown).

We observed that suboptimal amounts of $NR_{\rm II}$ or $NR_{\rm II}$ 2302 could bring about maximal stimulation of transcription when

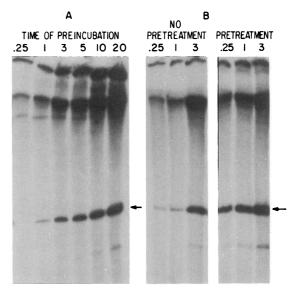


FIG. 2. (A) Time course of open complex formation for a transcription reaction containing NR_{II} at 2 nM. The number above each lane indicates the time in minutes of incubation with NR_{II} before addition of UTP and heparin. (B) The effect of pretreating NR_I with NR_{II} in the presence of ATP, CTP, and GTP for 0 min at 4°C (no pretreatment) or for 20 min at 37°C (pretreated) on the time course of open complex formation. All reactions contained NR_{II} at 2 nM and the same final concentration of nucleotides. The number above each lane refers to the time in minutes of incubation with NR_{II} and NR_{II} before addition of UTP and heparin. Arrow indicates the transcript initiated at glnAp2.

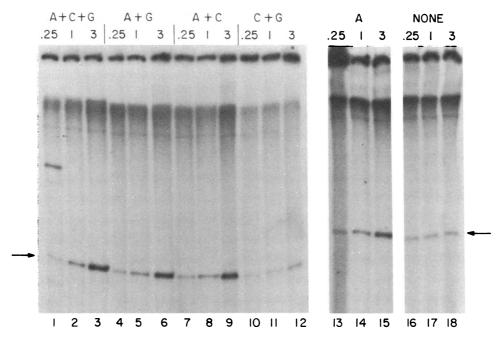


Fig. 3. Effect of pretreating NR_I with $NR_{II}2302$ in the presence of various nucleotides on the time course of open complex formation. The time course for six transcription assays containing identical amounts of $E\sigma^{60}$, NR_I , and $NR_{II}2302$ is shown. The number above each lane indicates the time of incubation with NR_I and $NR_{II}2302$ before addition of UTP and heparin. In each case, NR_I had been pretreated with $NR_{II}2302$ for 20 min at 37°C in the presence of the following nucleotides: lanes 1–3, ATP, CTP and GTP; lanes 4–6, ATP and GTP; lanes 7–9, ATP and CTP; lanes 10–12, CTP and GTP; lanes 13–15, ATP; lanes 16–18, no nucleotides. All reactions contained $NR_{II}2302$ at 1 nM. Lanes 1–12 and 13–18 are from two different gels.

the time of incubation was increased sufficiently (shown for NR_{II} in Fig. 2A). We examined the possibility that NR_{II} was catalyzing the conversion of NR_I to an active form during the incubation and found that pretreatment of NR_I with NR_{II} or NR_{II}2302 for 20 min at 37°C in the presence of ATP, CTP, and GTP significantly shortened the period of time required for maximal open complex formation (shown for NR_{II} in Fig.

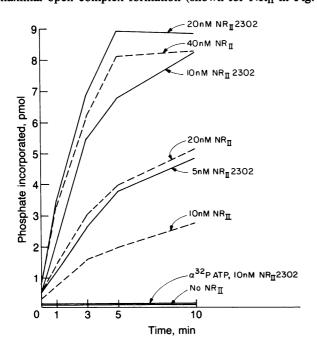


Fig. 4. NR_{II} and NR_{II}2302 catalyze the incorporation of the γ phosphate of ATP into protein. The time course of the incorporation of labeled phosphate into trichloroacetic acid-precipitable material is shown for reactions containing various amounts of NR_{II} or NR_{II}2302, NR_I at 2.4 μ M and ATP at 0.4 mM. The ATP was labeled in the γ position except where noted. Each sample assayed contained 21.6 pmol of NR_I.

2B). In the absence of nucleotides, the pretreatment was ineffective (not shown). In Fig. 3, we present the result obtained when the time course of open complex formation was examined in transcription assays containing NR_I pre-

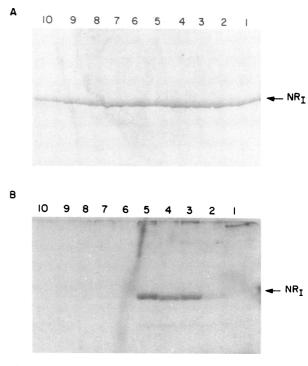


Fig. 5. Covalent modification of NR_I by $NR_{II}2302$. NR_I was incubated with $[\gamma^{-32}P]ATP$ for various times in the presence or absence of $NR_{II}2302$ (10 nM). (A) Samples were precipitated with trichloroacetic acid, run on a $NaDodSO_4/polyacrylamide$ gel, and stained with Coomassie brilliant blue. (B) Autoradiograph of the gel shown in A. Lanes 1–5, $NR_{II}2302$ present and samples removed at 0.25, 1, 3, 5, and 10 min; lanes 6–10, $NR_{II}2302$ absent and samples removed at 0.25, 1, 3, 5, and 10 min. The position of NR_I is indicated.

treated with $NR_{II}2302$ in the presence of various nucleotides. In this figure, pretreatment in the absence of nucleotides (Fig. 3) serves as a control for the effectiveness of the pretreatment. As shown, only ATP was required. Taken together, these data suggest that the rate-limiting step in the activation of transcription initiation at glnAp2 when NR_{II} is limiting is a direct interaction between NR_{I} and NR_{II} requiring ATP.

In Vitro Modification of NR_I by NR_{II} and NR_{II}2302. We examined the possibility that the ATP requirement in the "pretreatment reaction" reflected modification of NR_I by NR_{II} through nucleotidylation or phosphorylation. For this purpose, a relatively large amount of NR_I was incubated with NR_{II} or NR_{II}2302 in the presence of either [α -³²P]ATP or [γ -³²P]ATP. At various times after the addition of ATP, samples were removed and the incorporation of ³²P into trichloroacetic acid-precipitable material was measured. The results of these experiments indicate that the γ phosphate of ATP is incorporated into protein, whereas the α phosphate is not (Fig. 4). Also shown in Fig. 4 are the results obtained when various amounts of NR_{II} and NR_{II}2302 were incubated

with NR_I and $[\gamma^{-32}P]$ ATP. Using the initial reaction rates, the specific activities were 5.88 and 16.8 pmol of phosphate incorporated per min per pmol of NR_{II} and NR_{II}2302, respectively. Thus, in this assay the NR_{II}2302 preparation is \approx 3 times as active as the NR_{II} preparation. No incorporation of the γ phosphate of ATP into protein was observed when NR_I was incubated with ATP in the absence of NR_{II} or NR_{II}2302. The maximal amount of phosphate incorporated corresponded to 0.45 molecule per NR_I dimer. We observed that 72% of the phosphate incorporated into protein was released by heating the sample to 98°C for 7 min in 10% trichloroacetic acid.

We examined the products of protein labeling reactions on a NaDodSO₄/polyacrylamide gel and by autoradiography. As shown in Fig. 5, NR_I became labeled when incubated with NR_{II}2302 and ATP, but it was not labeled when incubated with ATP in the absence of NR_{II}2302. This result indicates that the trichloroacetic acid-precipitable phosphate is covalently attached to NR_I.

Correlation Between the Covalent Modification of NR_I and

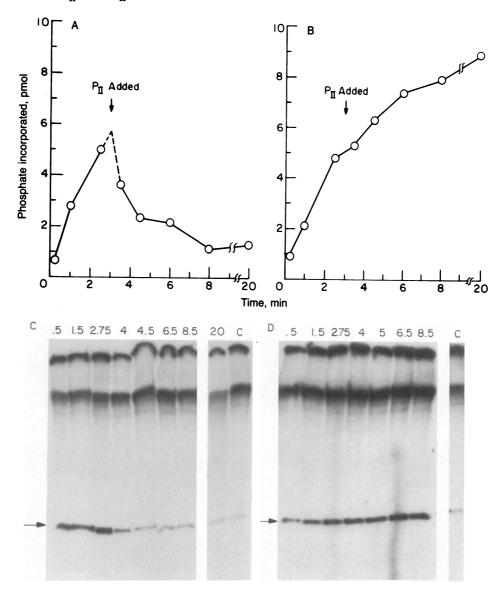


Fig. 6. Correlation between the covalent modification of NR_I and the activation of transcription at glnAp2. (A) Time course of incorporation of phosphate into protein, as in Fig. 4, using 40 nM NR_{II} . At 3 min, P_{II} was added to 0.33 μ M, indicated by an arrow. Each sample analyzed contained 19.2 pmol of NR_I . (B) As in A, but $NR_{II}2302$ at 10 nM in place of NR_{II} . (C) Transcription assay using samples removed from the labeling reaction shown in A at the time indicated above each lane. The position of the transcript initiated at glnAp2 is indicated by an arrow. Lane C is a control transcription reaction run in the same experiment that did not receive a sample containing NR_I and NR_{II} . (D) Transcription reaction from the labeling reaction shown in B at the time indicated above each lane. Lane C is a control transcription reaction from the same experiment that did not receive a sample containing NR_I and $NR_{II}2302$.

the Activation of Transcription at glnAp2. We tested the effect of P_{II} on the modification of NR_{I} by NR_{II} and $NR_{II}2302$. In the experiments shown in Fig. 6, the modification of NR_{I} by NR_{II} and $NR_{II}2302$ was allowed to proceed to a point where a significant amount of NR_{I} had been converted to NR_{I} -phosphate and P_{II} was then added. When NR_{II} was used in such an experiment, the addition of P_{II} caused the rapid removal of the phosphate from NR_{I} (Fig. 6A). When $NR_{II}2302$ was used in place of NR_{II} , the addition of P_{II} did not prevent the continuing incorporation of phosphate (compare Fig. 4 and Fig. 6B). These results suggest that in the presence of P_{II} , NR_{II} , but not $NR_{II}2302$, can dephosphorylate NR_{I} -phosphate.

We exploited the different response of NR_{II} and $NR_{II}2302$ to P_{II} to demonstrate indirectly that NR_{I} -phosphate is required for the activation of transcription from glnAp2. Samples of the protein-labeling reactions shown in Fig. 6 A and B were removed at various times and tested for their ability to activate transcription from glnAp2. Removal of the phosphate from NR_{I} -phosphate by NR_{II} in the presence of P_{II} simultaneously resulted in the loss of the ability to activate transcription at glnAp2 (Fig. 6C). When $NR_{II}2302$ was used in place of NR_{II} , the addition of P_{II} did not diminish the activation of transcription from glnAp2 (Fig. 6D).

DISCUSSION

We have shown that the activation of NR_I —that is, its conversion to the form capable of stimulating the initiation of transcription at glnAp2—requires NR_{II} and ATP. This conversion results from the NR_{II} -catalyzed phosphorylation of NR_I . The position of the phosphate on NR_I and the nature of the phosphate-protein bond remain to be determined.

The conclusion that NR_I -phosphate is the active form is strongly supported by the comparison of the activities of NR_{II} , the product of the wild-type glnL gene, and of NR_{II} 2302, the product of the mutant gene glnL2302. It had previously been shown that in intact cells containing $glnL^+$, but not in those containing glnL2302, P_{II} could prevent the activation of transcription from glnAp2 (4, 10). We have now shown that addition of P_{II} to a reaction mixture containing NR_{II} , NR_{I} -phosphate, and ATP resulted simultaneously in the release of protein-bound phosphate and in the loss of the capacity to stimulate the initiation of transcription at glnAp2. By contrast, when NR_{II} 2302 was used in place of NR_{II} , the addition of P_{II} caused neither the release of protein-bound phosphate nor the loss of that capacity.

These results suggest that NR_{II} is an NR_I kinase that can be converted by P_{II} to an NR_I-phosphate phosphatase. These two activities account for the role of NR_{II} in the cyclic cascade system responsible for the regulation of the synthesis of glutamine synthetase in response to the availability of nitrogen. When the ammonia concentration is low, UTase converts P_{II} to P_{II}-UMP, NR_{II} converts NR_I to NR_I-phosphate, and transcription of glnA is initiated. An increase in the concentration of ammonia causes the uridylyl-removing enzyme to remove the uridylyl group from P_{II}, which in combination with $NR_{\rm II}$ removes the phosphate from $NR_{\rm I}$ and halts the initiation of glnA transcription. It has long been known that P_{II} stimulates the adenylylation and consequent inactivation of glutamine synthetase by adenylyltransferase (ATase) and that P_{II}-UMP stimulates the deadenylylation and consequent activation of glutamine synthetase by ATase (reviewed in ref. 15). Thus, P_{II} and UTase are members of two cyclic cascade systems: one responsible for the regulation of glutamine synthetase activity, and the other one responsible for the regulation of glutamine synthetase synthesis. In both cases, $P_{\rm II}$ causes the response appropriate for nitrogen excess: glutamine synthetase is inactivated and its synthesis is halted. However, the biochemical reactions stimulated by $P_{\rm II}$ are quite different: ATase is stimulated to add adenylyl groups to glutamine synthetase, whereas $NR_{\rm II}$ is stimulated to remove the phosphate group from $NR_{\rm I}$ -phosphate.

 NR_I resembles other regulatory proteins of $E.\ coli$, such as the catabolite activating protein and the regulatory proteins of the mal and ara operons, in its ability to activate the initiation of transcription (reviewed in ref. 16). It differs from these other proteins in that its interconversion between active and inactive forms is mediated by covalent modification catalyzed by a second regulatory protein. This type of regulation is more complicated, but as has been pointed out in the case of enzymes such as glutamine synthetase and isocitrate dehydrogenase (15, 17), such control systems are exquisitely sensitive to changes in the environment.

We thank L. Reitzer, P. McLean, and T. Hunt for helpful discussions; L. Reitzer for his generous gift of NR_I ; S. G. Rhee for P_{II} ; and T. Hunt for core RNA polymerase. We are grateful to Hilda Harris-Ransom for preparing the manuscript. This research was supported by Research Grants GM07446 from the National Institute of General Medical Sciences and AM13894 from the National Institutes of Arthritis, Diabetes, and Digestive and Kidney Diseases, and by Grant PCM84-00291 from the National Science Foundation.

- Reitzer, L. J. & Magasanik, B. (1985) Proc. Natl. Acad. Sci. USA 82, 1979-1983.
- Pahel, G. & Tyler, B. M. (1979) Proc. Natl. Acad. Sci. USA 76, 4544-4548.
- Garcia, E., Bancroft, S., Rhee, S. G. & Kustu, S. (1977) Proc. Natl. Acad. Sci. USA 74, 1662–1666.
- Chen, Y.-M., Backman, K. & Magasanik, B. (1982) J. Bacteriol. 150, 214-220.
- Pahel, G., Zelenetz, A. P. & Tyler, B. M. (1978) J. Bacteriol. 133, 139-148.
- Reitzer, L. J. & Magasanik, B. (1983) Proc. Natl. Acad. Sci. USA 80, 5554-5558.
- Hirschman, J., Wong, P.-K., Sei, K., Kenner, J. & Kustu, S. (1985) Proc. Natl. Acad. Sci. USA 82, 7525-7529.
- Hunt, T. P. & Magasanik, B. (1985) Proc. Natl. Acad. Sci. USA 82, 8453-8457.
- Bloom, F. R., Levin, M. S., Foor, F. & Tyler, B. (1978) J. Bacteriol. 134, 569-577.
- Bueno, R., Pahel, G. & Magasanik, B. (1985) J. Bacteriol. 164, 816–822.
- 11. Ginsburg, A. & Stadtman, E. R. (1973) in *The Enzymes of Glutamine Metabolism*, eds. Prusiner, S. & Stadtman, E. R. (Academic, New York), pp. 9-44.
- Adler, S. P., Purich, D. & Stadtman, E. R. (1975) J. Biol. Chem. 250, 6264-6272.
- Ueno-Nishio, S., Backman, K. C. & Magasanik, B. (1983) J. Bacteriol. 153, 1247-1251.
- Ueno-Nishio, S., Mango, S., Reitzer, L. J. & Magasanik, B. (1984) J. Bacteriol. 160, 379-384.
- Chock, P. B., Shacter, E., Jurgen, S. R. & Rhee, S. G. (1985) in Current Topics in Cellular Regulation, eds. Shaltiel, S. & Chock, P. B. (Academic, New York), Vol. 27, pp. 3-12.
- Raibaud, D. & Schwartz, M. (1984) Annu. Rev. Genet. 18, 173-206.
- Koshland, D. E., Jr., Walsh, K. & LaPorte, D. C. (1985) in Current Topics in Cellular Regulation, eds. Shaltiel, S. & Chock, P. B. (Academic, New York), Vol. 27, pp. 13-22.
- 18. McClure, W. R. (1985) Annu. Rev. Biochem. 54, 135-170.